+ ارسال موضوع جدید
صفحه 3 از 4 نخستنخست 1 2 3 4 آخرینآخرین
نمایش نتایج: از شماره 21 تا 30 , از مجموع 31

موضوع: بتن

  1. #1
    مدیر بازنشسته

    http://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gif

    [ ]
    تاریخ عضویت
    Sep 2009
    محل سکونت
    ı̴̴̡̡̡ ̡͌l̡̡̡ ̡͌l̡ ̴̡ı̴̴̡|̲̲̲͡͡͡ ̲▫̲͡ ̲̲̲͡͡π̲̲͡͡ ̲̲͡▫
    نوشته ها
    19,922
    تشکر
    3,817
    تشکر شده 14,125 بار در 4,874 پست

    بتن

    همانطور که می‌دانیم امروزه صنعت بتن نقش بسیار مهمی در ساخت و سازهای جوامع بشری ایفا می‌کند و یکی از عوامل بسیار موثر در سازه‌های بتنی در جهان است. در این راستا انجمن سیمان پرتلند ( PCA ) تحقیقاتی را به منظور استفاده از بتن در دیگر پروژه‌ها آغاز نموده؛ پس از آزمایشات و تحقیقات فراوان موفق شد به راه حل بسیار خوبی به نام بتن اسفنجی ( بتن تراوا ) دست یابد.

    بتن اسفنجی که حاصل این دست رنج بود، توانست تحولات زیادی را در محوطه سازی‌های شهرهای اروپا و آمریکا ایجاد کند. البته این نوع بتن هنوز در ایران جا نیفتاده، ولی امید است با تلاش مسئولین ادارات، مهندسین و متخصصین فن این بتن به منظور حفظ بیشتر محیط زیست و مقرون به صرفه بودن مورد استفاده در پروژه‌های کشورمان نیز قرار بگیرد.

    [برای دیدن لینک ها ابتدا باید عضو انجمن شوید. برای ثبت نام اینجا کلیک کنید...](135 کیلو بایت)

  2. کاربر مقابل از این پست Par Pari تشکر کرده است.


  3. #21
    مدیر بازنشسته

    http://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gif

    [ ]
    تاریخ عضویت
    Sep 2009
    محل سکونت
    ı̴̴̡̡̡ ̡͌l̡̡̡ ̡͌l̡ ̴̡ı̴̴̡|̲̲̲͡͡͡ ̲▫̲͡ ̲̲̲͡͡π̲̲͡͡ ̲̲͡▫
    نوشته ها
    19,922
    تشکر
    3,817
    تشکر شده 14,125 بار در 4,874 پست

    پیش فرض

    آرماتورهاي غير فولادی در بتن
    در سالهاي اخير استفاده محدودي از آرماتورهاي غير فلزي آغاز گشته است هر چند تحقيقات بر روي کاربرد وسيع‌تر آنها و عملکرد دراز مدت اين نوع آرماتورها ادامه دارد. اين آرماتورها که معروف به آرماتورهاي با الياف پلاستيکي (FRP) هستند از الياف مختلفي چون الياف شيشه‌اي (GFRP)، الياف آراميدي (AFRP) و الياف کربني (CFRP) در يک رزين چسباننده تشکيل شده اند. در جدول 2 خواص مکانيکي چند آرماتور اليافي که کاربرد پيدا کرد‌ه‌اند‌، آورده شده است. در شکل 2 ميله‌هاي پلاستيکي ساخته شده با الياف مختلف و فولادهاي پيش تنيدگي از نقطه نظر منحني‌هاي تنش-کرنش با يکديگر مقايسه شده‌اند.


    جدول - خواص مکانيکي الياف‌هاي مختلف


    نوع الياف

    مقاومت کششي (MPa)

    کرنش نهايي (٪)

    E (Gpa)

    آراميد

    3400-2700

    4-5/2

    165-73

    شيشهE

    3500

    5-3

    75

    شيشه S

    4500

    5/5-5/4

    87

    کربن مدول پايين

    3900-3200

    6/1-1

    250

    کربن مدول بالا

    2700-2300

    6/0

    400


    شکل 2- منحني تنش-کرنش فولاد و آرماتورهاي اليافي






    خاصيت عمده اين آرماتوها که سبب کاربرد آنها شده است، مقاومت در برابر خوردگي آنهاست که مي‌تواند در محيط‌هاي بسيار خورنده دوام دراز مدتي داشته باشند. علاوه بر اين مقاومت بالا، مقاومت به خستگي بالا، ظرفيت بالاي تغيير شکل ارتجاعي، مقاومت الکتريکي زياد و هدايت مغناطيسي پايين و کم اين مواد از مزاياي آنها شمرده مي‌شود. البته اين مواد معايبي چون کرنش گسيختگي کم و شکننده بودن و خزش زياد و تفاوت قابل ملاحظه ضريب انبساط حرارتي آنها در مقايسه با بتن را به همراه دارند ] 5[.
    اخيراً از الياف مختلف شبکه‌هايي بافته شده و بصورت يک شبکه آرماتور در سطح بتن براي کنترل ترک و کم کردن عرض آن و همچنين در ديوارهاي نماي بتني از آن استفاده مي‌کنند. تحقيقات روي کاربرد صفحات اليافي بجاي صفحات فولادي براي تقويت قطعات خمشي و تيرها و دالها بويژه در پلها ادامه دارد. اين صفحات بارزين‌هاي اپوکسي به نواحي کششي از خارج اتصال داده مي‌شوند. کاربرد صفحات با الياف کربني براي اين تقويت بيشتر رايج گشته و در چندين پل در ژاپن و در بعضي کشورهاي اروپايي از آن استفاده شده است ]6[.


    بتن‌هاي ابداعي

    در بعضي موارد با تغيير در مواد تشکيل‌ دهنده بتن و با روش‌هاي ابداعي مي‌توان پاره‌اي از خواص نامطلوب بتن را حذف نمود. اين امر منجر به پيدايش بتن‌هاي خاص با خواص ويژه‌اي مي‌گردد. بعنوان مثال تغييراتي است که مي‌توان در ترکيب بتن‌هاي با مقاومت زياد که اين روزها کاربرد بيشتري پيدا مي‌کنند را نام برد. بتن‌هاي با مقاومت بالا معمولاً با سيمان زياد و نسبت آب به سيمان کم و اضافه و جايگزين نمودن سيمان با دوده سيليس ساخته مي‌شوند. در حين عمل هيدراسيون سيمان و سخت شدن اين بتن‌ها چون آب داخل بتن کافي نيستَ، مقداري آب از سطح خارجي به قسمت داخلي براي تکميل عمل فوق مي‌رسد. بنابراين بتن هاي با مقاومت زياد در ساعت اوليه سخت شدن دچار جمع‌شدگي ذاتي قابل ملاحظه‌اي مي‌شوند. ممکن است اثرات منفي ديگري نظير حساسيت به ترک‌خوردگي بيشتر در اين بتن‌ها مشاهده شود. اين معايب را مي‌توان با روش ساده‌اي برطرف نمود. در يک عمل ابداعي مي‌توان حدود 25 درصد از حجم سنگدانه را با سنگدانه سبک وزن قبلاً خيس شده جايگزين نمود. اين سنگدانه‌ها باعث ايجاد ذخيره آب در بتن شده و محيطي با عمل‌آوري مرطوب فراهم مي‌سازند. نتيجه اضافه کردن سنگدانه پيش اشباع شده به بتن با مقاومت زياد، کاهش جمع‌شدگي ذاتي و کم شدن و حذف ترکهاي مويي خواهد بود. همچنين تراکم و دانسيته بالاي بتن‌هاي با مقاومت زياد سبب کاهش مقاومت در برابر آتش اين بتن‌ها مي‌شود که بعنوان يک عيب محسوب مي‌شود. در دماي بالا آب شيميايي خمير سيمان بخار شده ولي به علت متراکم بودن بتن با مقاومت زياد نمي‌تواند از آن خارج شود. در نتيجه پوشش بتني بصورت ورقه جدا شده و ظرفيت بارپذيري ستون کاهش مي‌يابد. در يک کار ابداعي مي‌توان الياف پروپيلني به بتن اضافه نمود. در دماي بالا الياف ذوب شده و کانالهايي براي فرار و خروج بخار آب از بتن فراهم مي‌سازند و از ورقه ورقه شدن بتن جلوگيري بعمل مي‌آورند ]7[.


    نتيجه‌گيري

    در سالهاي اخير تحول عظيمي در تکنولوژي بتن و پيدايش بتن‌هاي جديد صورت گرفته است. اين تحولات به پيدايش بتن‌هاي با مقاومت بسيار زياد، بتن‌هاي با نرمي بالا، بتن‌هاي با آرماتورهاي غيرفلزي، بتن با کارايي بسيار زياد، بتن با سنگدانه‌هاي بازيافتي و بتن‌هاي ابداعي منجر شده است. بايد اذعان نمود که نتايج تحقيقات سالهاي آخر قرن حاضر و ادامه آنها در قرن جديد مي‌تواند نگرش تازه‌اي به بتن بعنوان يک ماده ساختماني پرمصرف بدهد. اين نتايج منجر خواهد شد تا ديدگاه بتن بعنوان تنها يک ماده با مقاومت فشاري خوب به کلي دگرگون شده و خواص جديد بتن‌هاي نوين نظر اکثر دست اندرکاران پروژه‌هاي عظيم عمراني را در جهان بخود معطوف سازد.
    فهرست مراجع

    [1] “ Norwegian standard NS3473, concrete structures, Design rules”, Oslo, 1989.
    [2] H. Okamura, “Self compacting high performance concrete”, Ferguson Lecture at ACI convention (New Orleans), November 1996.
    [3] H. Okamura and K.Ozawa, “Mix design for Self compacting concrete”, Concrete library international, Japan, No. 25, Dec. 1995.
    [4] G. Konig et. Al., “New concepts for high performance concrete with improved ductility”, proceedings of the 12th FIP congress on challenges for concrete in the next millennium, Netherlands, 1998, pp. 49-53.
    [5] A. Nanni, “Fiber-reinforced plastic (FRP) reinforcement for concrete structures: properties and applications”, Elsevier, London, 1993.
    [6] Taerwe, “Non-Metallic (FRP) reinforcement for concrete structures”, RILEM proceedings, No. 29, E & FN Spon, London, 1995.
    [7] R.Breitenbucher, “High strength concrete C 105 with increased fiber resistance due to polypropylene fibers”, 4th international symposium on the utilization of high strength-high performance concrete, Paris, May 1996, pp 571-577.
    نوشته : دکتر علي اکبر رمضانيان پور


  4. کاربر مقابل از این پست Par Pari تشکر کرده است.


  5. #22
    مدیر بازنشسته

    http://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gif

    [ ]
    تاریخ عضویت
    Sep 2009
    محل سکونت
    ı̴̴̡̡̡ ̡͌l̡̡̡ ̡͌l̡ ̴̡ı̴̴̡|̲̲̲͡͡͡ ̲▫̲͡ ̲̲̲͡͡π̲̲͡͡ ̲̲͡▫
    نوشته ها
    19,922
    تشکر
    3,817
    تشکر شده 14,125 بار در 4,874 پست

    پیش فرض

    تقویت پاشیدنی برای تیرهای بتن مسلح ( FRP پاشیدنی )
    معرفى پیش :
    امروزه تقويت بوسيله بتن پیش ریخته ، پوشش ورق فولادي ، تقويت ، مسلح كردن با فيبر مانندكربن ، آراميد و شيشه بعنوان روشهاى تقويت زلزله اى براى سازه هاى بتنى بكار ميرود . اخيرا يك روش تقويت زلزله اى كه بصورت استفاده از ورقهاى پيوسته پوششى از اين فيبرها می باشد استفاده شده است و بخاطر دوام و قابل استفاده بودن اهميت بيشتري دارند هر چند موادي كه روش فيبرهاى پيوسته پوششى استفاده مي شوند گران قيمت است .
    در زمينه تقويت سازه ها و ساختمانها در مقابل نيروى زلزله در آينده تنها روشهاى ساده تقويت با قيمتهاى پايين نبايد مورد توجه قرار گیرد رفتارهاى زلزله بايد كاملاً شفاف شود .
    در اين مطالعه يك روش ساده ، جديد و ارزان جهت تقويت سازه هاى بتنى براى بالا بردن توان زلزله اى آن ساختمانها مورد بررسى قرار گرفته است ، اين روش با استفاده از فيبرهاى كوتاه با وينيل استر يك تركيب جديد از مواد براى تقويت زلزله است فيبرهاى كوتاه از جنس كربن و شيشه با رزين وينيل استر به محل مورد نظر در سازه بتنى پاشيده مي شود به اين حالت FRP پاشيدنى مي گويند .
    برتريهاى استفاده از رزين وينيل استر نسبت به رزين اپكسى اين است كه در اين روش تقويت بيشتر و زمان كمترى براى گرفته شدن و خشك شدن نياز است . بعلاوه مشخصات مكانيكى رزين وینيل استر مانند مشخصات رزين اپكسى است در اين مواقع نتايج اين روش و نتايج آزمايش تير T شكل تحت بارگذارى غير متقارن گزارش شده است بعلاوه لنگر و رفتار پیچشى و خمشى بين FRP و بتن با استفاده از اسليتگزارش شده .
    نتایج روش تقویتFRP پاشیدنی
    شكل(1) ايده تقويت با FRP پاشيدنى را نشان مي دهد ، عكس (1) كارگاه ساختمانى نمونه هاى ستون اسپرى پاشيده شده را نشان مي دهد . در اين روش رزين از طريق يك لوله باريك بوسيله يك كپرسور هدايت ميشود ، رزين يا فيبرهاى كوتاه مانند كربن يا شيشه در نوک قسمت پاشنده مخلوط مي شود پس از ان مواد تقويت كننده مستقيماً به سطح مورد نظر پاشيده مي شوند ، سپس سطح بوسيله يك غلطك صاف ميشود ، رزين سخت مي شود و تمام قسمت سازه اى اسپرى شده (پاشيده شده ) ، بوسيله مواد FRP تقويت ميشود. اين روش تقويت زلزله اى را براى تمام اعضاى سازه اى مختلف امكانپذیر مي سازد كه ميتواند ستون ، تير ، ديوار ، دال و .... باشد كه بصورت منفرد و يا تمام قسمتهاى سازه اى داخل به همراه هم باشد .
    ویرایش توسط Par Pari : 04-18-2010 در ساعت 23:19

  6. کاربر مقابل از این پست Par Pari تشکر کرده است.


  7. #23
    مدیر بازنشسته

    http://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gif

    [ ]
    تاریخ عضویت
    Sep 2009
    محل سکونت
    ı̴̴̡̡̡ ̡͌l̡̡̡ ̡͌l̡ ̴̡ı̴̴̡|̲̲̲͡͡͡ ̲▫̲͡ ̲̲̲͡͡π̲̲͡͡ ̲̲͡▫
    نوشته ها
    19,922
    تشکر
    3,817
    تشکر شده 14,125 بار در 4,874 پست

    پیش فرض

    روند اجراى تقويت پاشيدنى با frp بصورت زير است :
    گام اول :آماده کردن سطح مورد نظر
    در اين مرحله سطح بتن بوسيله يك سنباده مكانيكى سائيده شده و با هوا تميز مي شود .
    گام دوم :پوشش رزین اولیه
    در ا ين مرحله رزين اوليه جهت ايجاد چسبندگى زياد بين بتن و رزين مقاومتى اصلى روى سطح انجام میشود.
    گام سوم : آماده سازى قسمت بتني :
    مناطق پله اى و یا غير هم سطح بر روى سطح بتن با بتونه پر مي شود و سطح را جهت جلوگیری از تنش موضعى ، frp هواگیرى یك دست در سطح انجام مى شود . بعد از انكه بتونه خشك شد ، سطح دوباره سمباده زده ميشود .
    گام چهارم : پوشش رزين :
    در اين گام جهت بيشتر چسبناک كردن رزين ابتدا بوسيله يك پاشنده روى سطوح پاشيده مي شود .
    گام پنجم : عمل اصلى اسپرى : (عكس 1)
    رزين و فيبر كوتاه (short) بر روى بتن در زمان مشابهى بهمراه هم پاشيده مي شوند . طول فيبر كربن و فيبر شيشه به ترتيب 2و 1.5 اینچ است .
    گام ششم : اشباع ( عكس 2)
    در اين مرحله هواى به دام افتاده با غلتك زدن خارج مي شود .
    در اين مقاله جهت مقايسه رفتارهاى سازه اى frp پاشيده شده نسبت به تقويت ورقه هاى پيوسته فيبر ، اماده سازیهاى اوليه اى مانند گامهاى 1 تا 3 انجام شده هر چند هدف رسيدن به مقاومت مناسب زلزله اى از گامهاى 4 به بعد جامه عمل مي پوشد .

  8. کاربر مقابل از این پست Par Pari تشکر کرده است.


  9. #24
    مدیر بازنشسته

    http://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gif

    [ ]
    تاریخ عضویت
    Sep 2009
    محل سکونت
    ı̴̴̡̡̡ ̡͌l̡̡̡ ̡͌l̡ ̴̡ı̴̴̡|̲̲̲͡͡͡ ̲▫̲͡ ̲̲̲͡͡π̲̲͡͡ ̲̲͡▫
    نوشته ها
    19,922
    تشکر
    3,817
    تشکر شده 14,125 بار در 4,874 پست

    پیش فرض

    مشخصات مکانیکیFRP پاشیده شده :
    پنج نمونه از ماده پاشيده شدهFRP بصورت نمونه هاىA(JISK7054) آماده شده ، شرايط آماده كردن نمونه ها دقيقا مانند شرايط اصلى مي باشد . ضخامتFRP با كنترل زمان پاشيدن 3 میلیمتر در نظر گرفته شد تا سختى مشابهى با ورقه هاى فيبرى فيبركربن 200 gr/m داشته باشد ، بر اساس روشهاى آزمايشى كششى براى مواد تقويتى پلاستيكى از فيبر شيشه آزمايشى كششى نيز براى اين نمونه ها استفاده شده است .
    جدول (1) نتايج آزمايشهاى كششى را جمع بندى مي كند . مناطق مقاطع شامل رزين در تنش مورد محاسبه منظور شده . مقاومت كششىFRP پاشيدنى حدود 70Mpa است و مقاومت در طول واحد نيز حدود 270 N/mm است . ضريب الاستيسيته 8 Gpa و سختى آن 24 KN/mm مى باشد . اين مقادير تقريباً مشابه مقادير ورقه هاى فيبر كربن به مشخصات 200 Kg/m , 26 KN/mm ميباشد .

    Elongation
    (%)
    Elastic Modulus
    (Gpa)
    Tensilc Strcngth
    (Mpa)
    Thickncss
    (mm)
    Width
    (mm)
    1.24
    8.02
    67.2
    3.99
    24.8

    آزمایش خمش بینFRP و بتن
    FRPپاشيده شده انعطاف زيادى براى ستون بتنى در سايتهاى ساختمانى بهمراه مى آورد . معلوم شده است كه رفتارهاى سازه اى تيرهايى كه بوسيله ورقه هاى فيبر تقويت شده بوسيله شرايط لنگر ورقه ها در گوشه هاى اتصال بين تير و دال تحت تأثير قرار گرفته است . در اين مقاله در نظر گرفته شده كهFRP پاشيده شده در محلهاى گوشه هاى تلاقى با استفاده از پر كننده هاى شكافFRP تحت لنگر قرار مي دهد . شكل (2) نشان مي دهد كه چگونهFRP پاشيدنى در دو سطح تلاقى استفاده مي شود . در اين روش يك پیش فرض وجود دارد كه مواد فولادى وجود ندارد ، در اين مقاله آزمايش خمش به وسيله نمونه هاى دو برابر برش جهت بررسى اثر تأثير شكافهاى پر كنندهFRP و آزمون متغيرهاى اثر اندازه شكافها مورد استفاده قرار ميگیرد .
    [برای دیدن لینک ها ابتدا باید عضو انجمن شوید. برای ثبت نام اینجا کلیک کنید...]
    نمونه های مورد استفاده برای آزمایش خمش
    نمونه هاى مورد استفاده براى خمش بينFRP و بتن چنانكه در شكل (3) مي بينيد است . نمونه شامل يك منشور بتن(100*100*600 mm) كه در وسط شكاف دار است مي باشد كه با FRP تقويت شده است دو ميله فولادى در دو طرف نمونه هيچ اتصالى با هم ندارند و اين به آن معنا است كه دو منشور تنها از طريقFRP با هم اتصال دارند . نمونه شماره (1) جهت بررسي خمش خالص بين FRP و بتن شكاف نداشت ولى نمونه هاى (2) تا (4) داراى شكافهاى پر شده باFRP بودند.FRP موجود در شكافها باعث اعمال باربرى مكانيكى به بتن مي شود. پارامترهاى نمونه هاى عمق شكافها (5 ، 10 و 20 میلیمتر) بودند ليست نمونه ها به همراه نتايج آزمايش در جدول (2) آمده است . 3 نمونه براى متغيرهاي يك هدف آزمايش مورد آزمايش قرار گرفت .
    [برای دیدن لینک ها ابتدا باید عضو انجمن شوید. برای ثبت نام اینجا کلیک کنید...]
    بتن مورد استفاده در اين نمونه ها بتن با وزن معمولى و مقاومت فشارى و كششى به ترتيب32.8 MPa و 2.7 MPa مي باشد .
    بارگذارى كششى استاتيكى در هر دو ميله دو طرف نمونه با ماشين كنترل خيز بارگذارى2 MN انجام شده است . بارگذاري و عرض ترک در شكاف وسط نمونه ها نيز اندازه گیرى مي شود . كرنشهاىFRP بوسيله ساعتهاى خيز سنج اندازه گيري شده و در شكل (3) نشان داده شده است .
    Failure type
    At maximum load
    Slit
    Specimen
    Crack width
    (mm)
    Load
    (kN)
    Depth
    (mm)
    Width
    (mm)
    Bond failure
    Bond failure
    Bond failure
    1.13
    1.48
    0.75
    20.8
    26.3
    14.8
    No slit
    No.1-1
    -2
    -3
    Concrete shear
    FRP rupture
    Concrete shear
    1.22
    1.78
    1.41
    24.1
    24.2
    27.1
    5
    40
    No.2-1
    -2
    -3
    FRP rupture
    Concrete shear
    Concrete shear
    -
    1.21
    1.78
    -
    23
    31.2
    10
    40
    No.3-1
    -2
    -3
    FRP rupture
    FRP rupture
    FRP rupture
    1.46
    0.79
    1.37
    30.2
    16.9
    26.3
    20
    40
    No.4-1
    -2
    -3

  10. کاربر مقابل از این پست Par Pari تشکر کرده است.


  11. #25
    مدیر بازنشسته

    http://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gif

    [ ]
    تاریخ عضویت
    Sep 2009
    محل سکونت
    ı̴̴̡̡̡ ̡͌l̡̡̡ ̡͌l̡ ̴̡ı̴̴̡|̲̲̲͡͡͡ ̲▫̲͡ ̲̲̲͡͡π̲̲͡͡ ̲̲͡▫
    نوشته ها
    19,922
    تشکر
    3,817
    تشکر شده 14,125 بار در 4,874 پست

    پیش فرض

    نمونه افت و بارگذاری حداکثر
    نمونه شماره (1) بدون شكاف با جدا شدن خمشى بتن ازFRP منهدم شده و نمونه هاى (2) تا (4) در اثر پارگیFRP يا افت برشى بتن خراب شده است . نمونه هاى افتهاى معمول در عكسهای (2) نمايش داده شده است .
    حداكثر بار براى نمونه هاى شماره (1) بينFRP پاشيده شده بتن 20.6 kN در متوسط سه نمونه ميباشد. با مقايسه اين مقدار با مقاومت خمشى ورقه هاى فيبر كربن در مي يابيم كه آنها هم سختى مشابهى دارند ، ميزان مقاومت خمشى حدودا 80% مقاومت خمشى تحليلي بوده است .
    مقاومت لنگر شكافهاى پر شده باFRP بعلت غير خطى بودن معلوم نيست چرا كه نمونه هاى (2) تا (4) كه داراى اين شرايط بوده اند در اثر پارگیFRP يا افت برش بتن از بين رفته اند . هر چند عمق شكاف 5 میلیمتر خود به تنهايى جهت بوجود آوردن پارگیFRP موثر بوده است . متوسط حداكثر بار سه نمونه 97% مقاومت كششى بدست آمده از نمونه هاى نمونه بردارى شده مي باشد .
    [برای دیدن لینک ها ابتدا باید عضو انجمن شوید. برای ثبت نام اینجا کلیک کنید...]
    توضیح کرنشFRP
    شكل (4) توضیح كرنشFRP را براى پنج نمونه نشان مي دهد . محورX فاصله بين مركز به مركز نمونه ها را نشان ميدهد . شكافهاى بين 80 و 120 میلیمتر در نمونه هاى (2) تا (4) مي باشند و در نمونه (1) مشاهده شده كه در يك مقطع شيب توزیع كرنش از مركز به سمت انتهاى نمونه به همراه افزايش بار حركت مي كند . اين اثر بعلت خارج شدن از حالت خمش در مادهFRP مي باشد .
    در نمونه هاى (2) تا (4) كرنشها در فواصل دورتر از شكافها بسيار اندک است . از اين نتايج اين مطلب استنباط مي شود كه شكافهاى پر شده باFRP قابليت لنگر دادن بهFRP را دارد .
    [برای دیدن لینک ها ابتدا باید عضو انجمن شوید. برای ثبت نام اینجا کلیک کنید...]
    نمونه های استفاده شده برای آزمایش تیر
    شكل (5) اندازه ها و جزئيات نمونه هاى تير را نشان مي دهد . نمونه ها به اندازه هاى یک سوم اندازه هاى واقعى تيرها و دالها ساخته شده اند ، اندازه : 300 ارتفاع و 200 عرض میلیمتر و نسبت برش 2 ميباشد . عرض و ضخامت دالها به ترتيب500 و 50 میلیمتر است .
    متغير ازمايشی نوعى از لنگرFRP در سطوح تلاقى تير و دال مي باشد ، در نمونه (1) و (2)FRP بوسيله شكافهاى پر شده بوسيلهFRP تحت لنگر قرار گرفت . در نمونه (2) ميخهاى لنگر گیر M12 همچنين در سطح دال مورد استفاده قرار گرفته است . در نمونه(3)FRP تنها بوسيله ميخهاى لنگر گیرM12 به سطح دال متصل شده است . بلوک هاى فولادى همچنين جهت لنگر دهى FRP در نمونه دال مورد استفاده قرار گرفته است . ضخامتFRP ، 3 میلیمتر در نظر گرفته شد تا سختى مساوى ورقه هاى فيبر كربن تقويت كننده نمونه هاى (22) تا (23) باشد .
    آرماتورهاى D13 با مقاومت جارى شدگی324 MPa و D4 با جارى شدگى 218 MPa به ترتيب به عنوان آرماتور اصلى و خاموت مورد استفاده قرار گرفته است . بتن مورد استفاده ، بتن با وزن معمولى و مقاومت 24 MPa مي باشد .
    حداكثر قطر ريز دانه 15 میلیمتر و مقاومت فشارى و كششى آن به ترتيب26.9 Mpa و 2.05 Mpa می باشد .
    [برای دیدن لینک ها ابتدا باید عضو انجمن شوید. برای ثبت نام اینجا کلیک کنید...]
    سیستم بارگذاری و اندازه گیریها
    هر نمونه تحت ممان خمشى غير متقارن در یك شكل بازگشتى قرار گرفته است ، زواياى انتقال از1/400 تا1/20 rad متغير بود . اندازه گیرى اين موارد تغيير مكانهاى افقى و عمودى بين بالا و پایين قطعه و کرنشهاى آرماتورهاى اصلی و خاموتها وFRP بود .
    روند خراب شدن نمونه ها
    نمونه ها پس از بارگذارى در عکس (3) نشان داده شده اند . تمام نمونه ها داراى بارگذارى پیچشى در دوره هاى بازگشت 1/100 انجام شده و در دومين سيكل بارگذارى تخريبFRP در گوشه هاى اتصال سطوح مشاهده شده است وFRP در قسمت كناره هاى تير داراى حالت خارج شدن از حالت خمشى بود . در نمونه شماره (4)FRP دور نمونه هاى فولادى در دومين سيكل بارگذارى به اندازه 1/5 rad خورد . پس از آن تخريبFRP جابجا شده در طول تركهاى برشى بتن ادامه پيدا كرد . در نمونه شماره (1) و (2) تركهاىFRP به دور گوشه تير در انتهاى تير در سيكل بارگذارى دوم به ميزان 1/5 rad اتفاق افتاد . در سيكل بارگذارى FRP , 1/33 rad در طول گوشه تير به سمت جهت محور تير پاره شد ، تخريب FRP در گوشه هاى تير در اين حالت مشاهده نشد .
    نمودار نيروى برشى در مقابل زاويه انتقال در شكل (6) ديده ميشود . زاويه اى كه در آن افت زياد نيروى برشى مشاهده شد در نمونه هاى (1) (2) (3) و (4) مشاهده شد . همچنين در اين آزمایش موثر بودن شيارهاى پر شده باFRP براى انتقال لنگر در تير مشاهده شد .
    [برای دیدن لینک ها ابتدا باید عضو انجمن شوید. برای ثبت نام اینجا کلیک کنید...]
    مقایسه بین تقویتFRP با پاشیدنی و ورقهای فیبر کربن
    نيروى برشى در مقابل منحنى زاويه انتقال با همين نمودارها در تقويت با ورقهاى فيبر كربن نشان داده شده است . نمونه هاى تيرT شكل با اندازه ها و مشخصات مشابه استفاده شده درFRP پاشيدني براى فيبر كربن استفاده شده تا تاثير تقويت ورق فيبر كربني را مورد بررسي قرار دهيم .
    نمونه شماره (11) بوسيله ورقه هاى فيبر كربنى تقويت نشده بود و نمونه هاى شماره (22) و (23) يك لايه ورقه فيبر كربنى 200 KJ/m تقويت شده بود . در نمونه هاى (22) و (23) ورقهاى فيبر در گوشه هاى اتصال سطوح در تيرها بوسيله ميخهاى لنگر گير محكم شده بودند . در نمونه شماره (22)
    ميخهاى لنگر گیر در هر دو سطوح تير و دال استفاده شده اند . در نمونه شماره (23) ورقه ها تنها به سطوح دال متصل شده بودند .
    منحنى هاى ساختارى براى اين نمونه ها در شكل (7) نشان داده شده است . نمونه شماره (11) بدون نقاط پیچشی تنها در اثر برش از بين رفت . بقيه نمونه هاى (1) تا (4) حالت افت تخريب را به همراه شكل تخريب پیچشی دارا بودند . اثر تقويت بوسيلهFRP پاشيده شده ، شناخته شده است و با مقايسه نمونه هاى (1) تا (4) با نمونه هاى (22) و (23) نشان مي دهد كه رفتار FRP با فيبر كربن تا حدود1/5 rad مشاهده شده است . پس از گذشتن بارگذارى از1/33 rad نمونه هاى تقويت شده باFRP مقاومت شكننده ترى را نسبت به نمونه هاى تقويت شده با فيبر كربن نشان مي دهد .
    اين بعلت تخريبFRP در گوشه هاى تيرهاست . مقاومت كششىFRP پاشيدنى و ورقه هاى فيبر كربن در واحد عرض به ترتيب268 KN/mm و 541 KN/mm است .
    [برای دیدن لینک ها ابتدا باید عضو انجمن شوید. برای ثبت نام اینجا کلیک کنید...]
    توزیع کرنش FRP
    توزيعهاى کرنشFRP در بارگذارى حداكثر هر سيكل بارگذارى در شكل (8) نشان داده شده است . دياگرامهاى سمت چپ براى نمونه (2) و سمت راست براى نمونه (3) مي باشد . دياگرامهاى بالايى توزيعهاى کرنش را در كناره هاى تير و دياگرامهاى پايينى توزيعهاى كرنش را در گوشه هاى تير نشان ميدهد . حداكثر كرنشFRP حدود 3 تا درصد می باشد .
    در نمونه شماره (2) كرنشهاى گوشه ها در دو انتهاى تير بيشتر از مقادير واقعى تخريب مي باشد و باعث پارگیFRP در گوشه ها مي شود . در نمونه شماره (3) كرنشهاى منفى اتفاق مي افتد . چرا كه حالت عكس خمشى در كناره هاى تير اتفاق مي افتد .
    [برای دیدن لینک ها ابتدا باید عضو انجمن شوید. برای ثبت نام اینجا کلیک کنید...]
    جمع بندی
    اين روش تقويت بوسيله فيبرهاى شيشه با رزين وينيل استر قابل استفاده براى تقويت تيرهاى بتن آرمه ميباشد . جمع بنديها بصورت زير مي باشد
    1) همه نتايج آزمايش خمش و آزمايش تیر نشان مي دهند كه شيارهاى پر شده توسطFRP براى انتقال لنگرFRP به بتن كارآيى دارد .
    2) عمق شيار به مقدار 5 میلیمتر جهت ايجاد حالت پارگی درFRP به تنهايى كفايت مي كند .
    3) افتFRP در محلهاى برخورد سطوح بين تير و دال در حالت استفاده از انتقال ممان با شيارهاى پر شده ازFRP مشاهده نشد و در نهايتFRP در زاويه پیچش 1/5rad در كناره هاى تير شروع به پاره شدن ميكند .

  12. #26
    مدیر بازنشسته

    http://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gif

    [ ]
    تاریخ عضویت
    Sep 2009
    محل سکونت
    ı̴̴̡̡̡ ̡͌l̡̡̡ ̡͌l̡ ̴̡ı̴̴̡|̲̲̲͡͡͡ ̲▫̲͡ ̲̲̲͡͡π̲̲͡͡ ̲̲͡▫
    نوشته ها
    19,922
    تشکر
    3,817
    تشکر شده 14,125 بار در 4,874 پست

    پیش فرض

    كاربردهاي بتن اليافي
    دالها
    بيشترين كاربردهاي بتن مسلح به الياف بويژه الياف فولادي تاكنون در دالها , عرشه پلها , كف سازي فرودگاهها , پاركينگها و محيطهاي در معرفي كاويتاسيون و فرسايش بوده است . در پل سازي مهمترين كاربرد ان در سطوحي بوده كه در معرض خوردگي و فرسايش قرار دارند .
    دالهاي روي بستر
    در مورد دالهاى روى بستر , نمونه هايي كه خوب بررسي شده باشند اندك هستند. اما در جاهايي كه دال بتني مسلح به الياف فولادي تحت تاشير عبور و مرور اتوبوسهاي سنگين قرار دارد , مشخص شده است كه اين نوع دال , با ضخامتي در محدود 60 تا 75 درصد دالهاى غيرمسلح , عملكردي مشابه آنها دارند با استفاده از اين نوع بتن , پوشش باند فرودگاهها را ميتوان به نحو قابل ملامحظه اى ( 20 تا 60 درصد) نازكتر از پوششهاي بتني غير مسلح مشابه اجرا كرد. خستگي خمشي عامل مهمي است كه بر عملكرد كفسازى اثر مي گذارد , اطلاعات موجود نشان ميدهد كه الياف , مقاومت بتن را در برابر خستگي به نحو قابل ملاحظه اي افزايش مي دهند .
    دالهاي سازه اي سقفها
    براى دالهاي كوچك , براساس نظريه خط سيلان , يك روش طراحي ارايه شده است كه بر نتايج حامل از ازمايش دالهاى دو طرفه بتنى متكى است . ولي برون يابي نتايج كار و اعمال انها بر دالهاي بزرگتر , به شدت نهى شده است .
    عرشه پلها
    استفاده از نمكهاي يخ زدا موجب انهدام عرشه پلها مي شود. بتن اليافي گرچه نمي تواند مانع از نفوذ اين نمكها شود ولي با محدود نگاه داشتن تعداد و عرض تركها ميتوان از گسترش دامنه اين انهدام جلوگيري كرد.
    تيرها
    خمش در تيرها
    در اين زمينه , هم براى تيرهايي كه تنها به الياف مسلح شده اند و هم در مورد تيرهايي كه از تركيب الياف و آرماتور در آنها استفاده شده , فرمولها و معادلاتي ارائه گرديده است . در مورد تيرهاي كه فقط به الياف مسلح باشند , معادلات مذكور ارزش عملي چنداني ندارند و تنها در مورد تيرهاي كوچك (10×10×35 سانتيمتري) و اعضاي فرعي سازه ها كاربرد دارند . اما در زمينه تيرهاي مسلح به تركيب الياف و آرماتور معادلات , طرح شده با توجه به استفاده از مقاومت كششي افزايش يافته بتن كه به كمك آرماتور كششي مي آيد , قادرند مدل مناسبي از تير به دست دهند. از جمله اين معادلات , روابط پشنهادي است كه مشابه معادلات روش طراحي بر اساس مقاومت نهايي ACI است .
    اتصالات تير- ستون
    مطالعات اخير روي اتصالات تير- ستون مقاوم در برابر زلزله با استفاده از الياف فولادي به جاي بخشي از ميلگردهاي حلقوي , حاكي از بهبود قابل ملاحظه مقاومت , نرمي و جذب انرژي اتصال است .
    ملاحظات مربوط به خستگي خمشي
    تحقيقات اخير نشان مي دهد كه افزودن الياف به تيرهاي بتني مسلح به ميلگرد عمر خستگي را و تغيير مكانها و عرض تركها را كاهش مي دهد. بر اساس اين تحقيقات نتيجه گرفته مي شود كه اثر مفيد الياف با افزايش ميزان ميلگردها كاهش مي يابد.
    برش در تيرها
    داده هاي آزمايشگاهي زيادي كه در دست هستند نشان ميدهند كه الياف اساساً ظرفيت برشي (مقاومت كششي قطري) تيرهاي بتني را افزايش مي دهند. به كار بردن الياف به جاي خاموتهاي قائم يا ميل گردهاي خم شده يا براي كمك به آنها مزاياي چندي را ايجاد مي كند كه عبارتند از :
    الف - الياف در حجم بتن به طور يكنواخت توزيع شده و خيلي بيشتر از ميلگرد هاي تقويتي برشي به يكديگر نزديك هستند .
    ب - مقاومت كششي در نخستين ترك و مقاومت كششي نهايي هر دو توسط الياف افزايش مي يابند .
    ج - مقاومت برشي اصطكاكي افزايش مي يابد.
    با استفاده از الياف داراي انتهاي آجدار مي توان از انهدام فاجعه آميز تيرهاي بتني در اثر كشش قطري جلوگيري كرد. برخي از پژوهشگران تحليل هايي ارائه داده اند كه نشان مي دهد الياف مي توانند از لحاظ اقتصادي جايگزين خاموتها شوند الياف داراي انتهاي چين خورده مي توانند به افزايشي چشمگير در مقاومت برشي منجر شود . در برخي آزمايشها اين افزايش حتي به 100 درصد بالغ گرديده است .
    اخيرا بر اساس نتايج آزمايشگاهي روي 7 تير داراي الياف كه چهار تير آن خاموت هم داشته اند معادله زير جهت برآورد Vcf پيشنهاد شده است .
    Vcf=2/3Ft(d/a)0.25
    Ft مقاومت كششي بتن است كه از نتايج كشش مستقيم استوانه هاى 6×12 اينچي (15×30 سانتيمتري) به دست مي ايد.
    ( d/a ) نسبت عمق مؤثر به دهانه برشي است . اثرات انواع مختلف الياف از طريق پارامتر Ft در معادله بررسي مي شود. روش طراحي پيشنهاد شده همان طريق ACI 318 را در مورد محاسبه سهم خاموت در ظرفيت برشي دنبال مي كند كه به آن نيروي مقاوم بتن نيز كه بر اساس تنش برش معادله بالا محاسبه مي شود اضافه ميگردد.
    برش در دالها
    مطالعات اخير نشان داده اند كه با افزودن الياف فولادي قلابدار به ارماتور در دالهاي بتني مسلح , مقاومت برشي انها بسته به درصد الياف تا 42 درصد افزايش يابد.
    شات كريت
    شات كريت (بتن پاشى) داراي الياف فولادي در ساختن سازه هاي گنبدي شكل , پوشش دادن , پايداري سنگريزه ها , تعمير بتن فرسوده و غيره به كار مي رود. طرح سازه ها به همان طريق سازه هاي مرسوم مورت مي گيرد , فقط مشخصات بهبود يافته فشاري , برشي و كششي بتن اليافي در محاسبات وارد ميشوند.
    فرسايش در اثر كاويتاسيون
    بتن مسلح به الياف فولادي براى تعمير آبروهاي خروجي , حوضچه هاي ارامش سرريزها و قسمتهاي ديگر بعضي از سدها به كار رفته است . در هر مورد از زمان تعمير تاكنون , با وجود ارتفاع زياد اين سدها و شگرف بودن قدرت آب خروجي بتن اليافي به بهترين نحو پايداري كرده است .
    كاربردهاي ديگر
    بتن مسلح به الياف و بويژه فولادي در بسياري از جاهاي ديگر نيز به كار رفته كه روشهاي طراحي خاص و روشني نداشته اند. به طور مثال اين موارد شامل : پياده روها , حفاظت خاكريزها , پي ماشين الات , پوشش آدم روها , سدها , پوشش نهرها , تانكهاي ذخيره مواد و اعضاي پيش ساخته نازك مي شود. مسلما با گذشت زمان و انجام تحقيقات بيشتر و كاملتر , موارد استفاده از اين نوع بتن متنوع تر و كاربرد آن نيز رايج تر خواهد شد.
    استفاده و كاربرد بتن اليافي در ايران
    بر اساس مطالب ياد شده بتن اليافي با مزاياي ويژه خود مي تواند كاربردهاي وسيعي داشته باشد , ليكن جهت به كار گيري آن در ايران لازم است كه دو نكته اساسي در نظر باشد.
    مورد اول :
    لازم است كه حداقل مقاومتي براى بتن در كليه سازه هاي بتني اعمال شود , كه اين خود در كيفيت بتن , بدون واردكردن هيچ گونه اليافي نقش موثر دارد. بدين معني كه بايد اول كيفيت بتن بدون الياف را ارتقا دهيم .
    مورد دوم :
    نظر به اينكه بايد از پديده «گلوله شدن» در بتن اليافي جلوگيري به عمل ايد , لذا لازم است نحوه صحيح مخلوط كردن الياف با بتن و همچنين استفاده از روان سازها جهت افزايش كارايى فراهم ايد . لازم است به اين صنعت نو پا با كاربردهاي فراوان , توجه بيشتري معطوف شود و الياف مختلف اعم از مصنوعي (مانند الياف پلي پروپيلن) و فولادي , به شكل مطلوب و با كيفيت
    مناسب ساخته شوند. سرمايه گذاري جهت ساخت الياف و اينكه صنعت پتروشيمي به ساخت الياف پلي پروپيلن و صنعت فولاد به ساخت الياف فولادي مبادرت ورزند, ميتواند راه گشا باشد .

    عليرضا خالو

  13. کاربر مقابل از این پست Par Pari تشکر کرده است.


  14. #27
    مدیر بازنشسته

    http://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gif

    [ ]
    تاریخ عضویت
    Sep 2009
    محل سکونت
    ı̴̴̡̡̡ ̡͌l̡̡̡ ̡͌l̡ ̴̡ı̴̴̡|̲̲̲͡͡͡ ̲▫̲͡ ̲̲̲͡͡π̲̲͡͡ ̲̲͡▫
    نوشته ها
    19,922
    تشکر
    3,817
    تشکر شده 14,125 بار در 4,874 پست

    پیش فرض

    استفاده از خرده شیشه در بتن
    خلاصه مقدار زیادی از شیشه های مصرف شده دوباره بازیافت می شوند وقسمتی نیز برای مصارف گوناگون از جمله سنگدانه های بتن به کار می روند .مقدار زیادیاز این مواد شرط لازم برای بازیافت را فراهم نمی کنند و این مواد برای دفن فرستادهمی شوند. فضای مورد استفاده برای دفن قابل توجه است و این فضا می تواند برای مصارفدیگری به کار برده شود. شیشه یک قلیایی غیر پایدار است که در محیط بتن میتواند باعثبوجود آمدن مشکلات ناشی از واکنش قلیایی – سیلیسی (ASR) شود. این ویژگی به عنوان یکمزیت در خرد کردن پودر شیشه و استفاده از آن به عنوان یک ماده پوزولانی در بتناستفاده شده است.
    رفتار دانه های بزرگ شیشه را در واکنش قلیایی در آزمایشگاه نمیتوان با رفتار واقعی پودر شیشه در طبیعت برابر دانست. تجربه مزایای واکنش پوزولانیشیشه را در بتن مشخص کرده است. می توان در بعضی از مخلوطهای بتن تا %30 وزن سیمانپودر شیشه اضافه کرد و به مقاومت مناسبی دست یافت. همچنین خزش خشک شدن بتن با پودرشیشه نیز در حد قابل قبول و مجاز است. 1 مقدمه شیشه در انواع مختلفی تولید می شود( بسته بندی ، شیشه صاف ، حباب لامپها ، لامپ تلویزیونها و ...). اما همه این وسایلعمر مشخصی دارند و نیاز به استفاده دوباره و بازیافت آنها به منظور جلوگیری ازمشکلات زیست محیطی که ناشی از ذوب آنها و یا دفن ایجاد می شود احساس می شود. 1-1بازیافت شیشه شیشه های مصرف شده بصورت تجاری به محلهای مخصوص طراخی شده برایبازیافت یا دفن و یا جمع آوری کربنات و سپس حمل آنها به محلهای دپو می روند. بزرگترین هدف قوانین زیست محیطی تا خد امکان کم کردن ضایعات شیشه و بردن آنها بهمحلهای دفن و تجزیه شیمیایی آنها به طور اقتصادی است. شیشه یک ماده منحصر به فرداست که می تواند بارها وبارها بدون تغییر در خواصش بازیافت شود. به عبارت دیگر یکبطری می تواند ذوب شده و دوباره به بطری تبدیل شود بدون اینکه تغییر زیادی در خواصشایجاد شود.
    بیشتر شیشه های تولیدی بصورت بطری هستند و مقدرا زیادی از شیشه های جمعآوری شده دوباره برای تولید بطری به کار می روند. اثر این پروسه به شیوه جمع آوری ومرتب کردن شیشه ها با رنگهای مختلف وابسته است. اگر رنگهای مختلف شیشه قابل جداکردن باشند می توان از آنها جهت تولید شیشه با رنگهای مشابه استفاده کرد. ولی وقتیکه شیشه با رنگهای متفاوت با هم مخلوط شدند، برای تولید بطری نامناسب می شوند وباید آنها را در مصارف دیگری به کار برد و یا دفن کرد. آقای ریندل (Rindl) به چندمورد از استفاده های غیر بطری شیشه اشاره می کند که شامل : سنگدانه روسازی راه،پوشش آسفالت ، سنگدانه بتن ، مصارف ساختمانی ( کاشی شیشه ای ، پانلهای دیوار و ...) ، فایبر گلاس ،شیشه های هنری ،کودهای شیمیایی ،محوطه سازی ،سیمان هیدرولیکی وبسیاری دیگر. استفاده از بتن در سنگدانه های بتن در این مقاله مورد بررسیقرار میگیرد. نگرانی بزرگی که در استفاده از شیشه در بتن وجود دارد واکنش شیمیایی مابینذرات سیلیس اشباع شیشه و قلیاییهای مخلوط بتن است که به واکنش سیلیسیقلیایی(Alkali Silica Reaction ASR) معروف است. این واکنش می تواند برای پایداریبتن بسیار خطرناک باشد. به همین منظور باید پیشگیری مناسبی در جهت کمتر کردن اثراین واکنش انجام شود. پیشگیری مناسب می تواند با استفاده از یک ماده پوزولانی مناسبمانند :خاکستر هوایی ،سرباره کوره آهن گدازی و یا میکرو سیلیس (Silica Fume SF) بانسبت مناسب در مخلوط بتن انجام گیرد. حساسیت شیشه به مواد قلیایی این حدس را بوجودمی آورد که شیشه درشت و فیبر شیشه می تواند اثر واکنش ASR را کم و یا محو کند. اگرچه این تصور نیز وجود دارد که پودر شیشه می تواند خواص پوزولانی (مانند مواد ذکرشده در بالا) از خود نشان دهد و از اثرات و انجام واکنش ASR توسط دانه های شیشهجلوگیری کند. ریندل نتایج کارهای انجام شده توسط افراد و ارگانهای مختلف را بیانکرد.
    برای مثال او به نقل از شرکت Boral می گوید که: پودر شیشه آهکی سیلیکاتی ردشده از الک 100# در جهت کاهش ASR است. همچنین مرکز زمین پاک واشنگتن بیان می کند کهدانه های ریز (پودر) می توانند بتن را بوسیله آزمایش ASR تضعیف کنند. همچنین کارهایانجام شده توسط آقای Samtur بر روی این موضوع بیان می کند که پودر شیشه رد شده ازالک 200# می تواند مانند یک ماده پوزولانی و در جهت کاهش اثر واکنش سنگدانه ها (ASR) عمل کند. همچنین آقای Pattengil نیز به همین نتایج دست یافت. اخیرا مرکزتحقیقات انرژی ایالت نیویورک حمایتهای مالی تحقیق بر روی کاربرد شیشه بازیافتی برایبلوکهای بنایی بتنی را انجام داده و نشان داده که شیشه ضایعاتی می تواند هم به جایسنگدانه و هم به عنوان ماده افزودنی (با ایجاد شرایط مشخص) در بتن استفاده شود. آقای Bazant بیان می کند که ذرات شیشه خدود mm1.5 باعث انبساط زیادی می شوند. اگرچهذرات کوچکتر از mm 0.25 در آزمایشگاه باعث هیچ گونه انبساطی در بتن نگردیدند. آقایان Baxterو Meyer فهمیدند که ذرات شیشه حدود mm 1.2 باعث بیشترین انبساط ملاتدر بین دانه های با اندازه mm 4.75 تا mm 0.15 می شوند. آنها فهمیدند که بیشترینانبساط وقتی حاصل می شود که 100% ذرات شیشه بصورت سنگدانه باشند و اگر شیشه های سبزبیش از 1% اکسید کرم داشته باشند اثر مثبتی بر واکنش ASR دارند.
    آقایان Carpeneter و Cramer گزارش می دهند که پودر شیشه بر کم کردن اثر واکنش ASR در آزمایش تسریع شدهملات مانند اثر خاکستر بادی و میکروسیلیس و سرباره موثر است. این نشان می دهد کهپودر شیشه می تواند انبساط ناشی از ASR را در سنگدانه های حساس و شیشه های دانه ایمتوقف کند. از مطالب بالا نتیجه گیری می شود که شیشه می تواند به سه صورت در بتناستفاده شود: درشت دانه ریز دانه پودر شیشه درشت دانه و ریز دانه می توانند باعثواکنش ASR در بتن شوند. اما پودر شیشه می تواند اثر ASR آنها را کاهش دهد. در بعدتجاری بسیار به صرفه است که پودر شیشه به جای سیمان مصرف شود تا اینکه شیشه بهعنوان سنگدانه در بتن مصرف شود. پودر پودر شیشه یک ماده با ارزش است که از شیشههایی که برای بازیافت مناسب نیستند به دست می آید. در قسمتهای بعدی اطلاعاتی درمورد استفاده از شیشه در بتن در سه خالت ذکر شده ارائه می گردد. کارهای آزمایشگاهیسه مورد از کاربردهای شیشه در بتن در برنامه تحقیق ARRB مشخص شده است. اینها شامل : شیشه های درشت دانه شیشه های ریزدانه و پودر شیشه است. حدود ذرات برای هر شاخه درزیر ذکر شده است. شیشه درشت دانه mm 12-4.75 CGA شیشه ریز دانه mm4.7-0.15 FGA پودرشیشه کوچکتر از mm0.01 GLP ترکیب شیمیایی تولیدات یک تیپ شیشه مشابه هستند. همچنیندر جدول زیر ترکیب شیمیایی شیشه ها با رنگهای مختلف ارائه شده است.
    شیشه های درشتدانه و ریز دانه جهت جایگزینی حدود اندازه های مشابه سنگدانه های طبیعی به کار میروند. پودر شیشه به عنوان یک ماده پوزولانی مورد مطالعه قرار می گیرد(مانند کاربردخاکستر هوایی و میکروسیلیس). مقایسه ای بین مواد مخلوط در شیشه شکسته و پودر شیشه ومیکروسیلیس در جدول زیر نشان داده شده است. مواد طبیعی استفاده شده در این کار شاملماسه طبیعی بتن ویکتوریا و سنگ شکسته طبیعی بازالتی بود. یکسری سنگدانه فعالخاکستری از NSW برای تشخیص اثر پودر شیشه بر توقف انبساط AAR (Alkali Aggregate Reaction) مصرف شد. 3- سنگدانه های درشت و ریز شیشه در بتن تاثیر خصوصیات فیزیکیسنگدانه های شیشه ای مانند اندازه آنها در مخلوط بتن مشخص است.
    شیشه بنابر طبیعتاشباع از سیلیس و شکل بی ریخت ملکولی آن به حمله شیمیایی مخیط قلیایی که در بتنهیدراته شده ایجاد می شود حساس است. این حمله شیمیایی می تواند تولید تغییر شکلهایوسیعی بر ژل AAR بتن داشته باشد که توسعه پیدا می کند و اگر پیشگیریهای مناسب درفرمولاسیون طرح اختلاط لحاظ نشود باعث ترک خوردن زودرس بتن می شود. طبیعت واکنششیشه در کاربرد آن در بتن بسیار اهمیت دارد. برای مثال بعضی از سنگدانه های طبیعیمی توانند وقتی که به مقدار کمی در بتن استفاده می شوند باعث انبساط بیش از اندازهبتن شوند و بعضی دیگر به صورت 100% در بتن استفاده می شوند. واکنش سنگدانه هابوسیله آزمایش تسریع شده استوانه ملات (AMBT) مشخص می شود (ASTM C1260). نتایجآزمایش AMBT نشان می دهد که مخلوط با شیشه بیشتر در ملات انبساط بیشتری نیز داشتهاست. شکل 2 این اثر را نشان می دهد. شرط برای این آزمایش این است که انبساط کمتر از 0.1% در عمر 21 روزه نشان دهنده سنگدانه غیر فعال و بیش از 0.1% در عمر 10 روزهنشان دهنده سنگدانه فعال است. انبساط کمتر از 0.1% در 10 روز ولی بیش از 0.1% در 21روز نشان دهنده سنگدانه با واکنش آهسته است. بر اساس این شرط شکل 2 نشان می دهد کهاستفاده از بیش از 30% شیشه در بتن ممکن نیست اثرات زیانباری داشته باشد. (مخصوصااگر قلیاییهای بتن کمتر از kg3 Na2O در یک متر مکعب باشد). بتنهای با قلیایی بیشترممکن است انبساطهای بیشتری را بوجود بیاورند. این موضوع در شکل 3 برای چهار اندازهاز ذرات شامل پودر (کمتر از mm0.01) ماسه خیلی ریز (mm0.3-0.5) و دو قسمت سنگدانهبزرگتر نشان داده شده است. نتیجه نشان داده شده در شکل 3 نشان می دهد که اندازه هایشیشه زیر mm0.3 اختمال کمی برای انبساط خطرناک دارند ولی اندازه های بزرگتر از mm0.6 ممکن است باعث انبساطهای قابل ملاخظه ای شوند. بنابراین اندازه انبساط وابستهبه میزان شیشه موجود، اندازه ذرات و میزان قلیاییهای مخلوط است.این نتایج نشان میدهد که شیشه می تواند ژلAAR تولید کند و اگر اندازه ذرات به اندازه کافی کوچک شودمی تواند به عنوان یک ماده پوزولانی عمل کند.
    مشخص شده است که فعالیت سنگدانه ها وانبساط حاصله می تواند با بکار بردن میزان مناسب از مواد با خاصیت سیمانی شدن مانندمیکرو سیلیس و خاکستر هوایی کنترل شود. همچنین پودر شیشه ریز می تواند بصورت مشابهعمل کند. با توجه به کاربرد سنگدانه های ریز و درشت که مورد بررسی قرار گرفتندمخلوطهای آزمایشی با توجه به میزان سنگدانه های ریز و درشت مناسب در مخلوط بتنگسترش یافته اند. آزمایشات به سمت تولید بتن با حدود Mpa32 تحمل پیش رفتند. مخلوطمحتوی Kg/m3255 سیمان و Kg/m3 85 خاکستر هوایی بود. میزان شن و ماسه به ترتیب Kg/m3 1080 و Kg/m3780 مناسب به نظر می رسید.
    بعد از تعدادی سعی و خطا فرمولی رضایتبخش بهسمت ویژگیهای مناسب بتن تازه جهت این مخلوط پیدا شد که به صورت زیر است: این موضوعاز مقاومت بتنها آشکار است که این مخلوطها به راحتی به مقاومت Mpa32 رسیده و ختی ازآن عبور می کنند( در حالی که از مقدار زیادی شیشه بازیافتی استفاده شده است). برایمصارف غیر سازه ای که مقاومت کمتری مورد نیاز است از همین مخلوط بدون کاهش دهنده (روان کننده) آب می توان استفاده کرد. دو مخلوط بتن با 50% شیشه درشت دانه و با یابدون 50% شیشه ریز دانه در جدول 4 تشریح شده است. با توجه به وجود 25% خاکستر هواییدر مخلوط ،بتن از واکنش ASR نیز محفوظ است. جمع شدگی ناشی از خشک شدن این مخلوطهاخوب و زیر مرز 0.075% که توسط استاندارد استرالیا معین شده ، بود. شکل 4 منحنی جمعشدگی خشک شدن متوسط را برای نمونه های با میزان شیشه متفاوت نشان می دهد. با توجهبه مطالب بالا به این نتیجه می رسیم که مقدرا حتی بیش از 50% از هر کدام از درشتدانه یا ریز دانه می توانند در مخلوط بتن سازه ای یا غیرر سازه ای مصرف شوند. اگرچهدیگر پارامترهای مهندسی این مخلوطها نیاز به تحقیق و بررسی بیشتری دارند. 4- اثراتپودر شیشه بر مقاومت ملات تقسیم اندازه ذرات پودر شیشه (GLP) بصورت زیر است: اندازهذرات کوچکتر از 5 میکرون 5-10 میکرون 10-15 میکرون بزرگتر از 15 میکرون درصد 39 49 4.4 7.6 سطح مخصوص پودر شیشه m2/Kg 800بود که تقریبا دو برابر بیشتر سیمانهای موجوداست. اثرات جایگزینی پودر شیشه با سیمین یا ماسه بر مقاومت مکعبهای ملات ( نسبتسنگدانه به سیمان 2.25 و نسبت آب به سیمان 0.47) در شکلهای 5 و 6 نشان داده شدهاست. در مورد جایگزینی سیمان ممکن است کاهش مقاومت 28 روزه پیش بیاید که یک اثرکوتاه مدت است و خواص پوزولانی را آشکار می کند. همچنین خاکستر هوایی نیز وقتی کهبا میزان مشابه سیمان جایگزین می شود اثری مشابه تولید می کند. مقاومتهای طولانی تربا میکرو سیلیس مورد مطالعه قرار گرفتند. این سری از نمونه ها تشکیل شده بود از : نمونه کنترلی که ریزدانه فعال خاکستری داشت ، نمونه با 10% میکروسیلیس ، با 20% پودر شیشه ، با 30% پودر شیشه که با سیمان مساوی جایگزین شده بودندو در یک نمونهنیز 30% پودر شیشه جایگزین سنگدانه ها شده بود. شکل 7 مقاومت این نمونه ها را درعمر 270 روزه نشان می دهد. سه نتیجه نشان می دهد که جایگزینی 10% بخار سیلیس مقاومتبیشتری از جایگزینی GLP دارد. ولی همچنین نشان می دهد نمونه ملاتی که حاوی GLP باشدبرای مدت طولانی تری رشد مقاومت خواهد داشت (به خاطر واکنش پوزولانی). باید توجهشود که وقتی 30% ماسه با پودر شیشه جایگزین می شود مقاومت 90 روزه برابر مقاومتمخلوط حاوی میکروسیلیس است. برای بررسی اثر مثبت جایگزینی پودر شیشه به جای سنگدانهها دو آزمایش اضافی بر روی مکعبهای ملات انجام شد (270 روز عمل آوری شده).
    در یکسری از نمونه ها 20% از سیمان با پودر شیشه جایگزین شد و در سری بعدی به علاوه 20% سیمان 10% از سنگدانه ها نیز جایگزین شدند. شکل 8 نشان می دهد که این جایگزینی بهصرفه است (احتمالا به خاطر بهبود دانه بندی و واکنش پوزولانی). همچنین باید توجهشود که مقاومت مخلوط با 20% شیشه به جای سیمان و 10% به جای سنگدانه ها به مقاومتمخلوط محتوی میکرو سیلیس رسیده و از آن تجاوز می کند. ظاهرا اثرات سود آور مقایسهشده میکرو سیلیس بر مقاومت نسبت به پودر شیشه بصورتی زیاد در این آزمایش افزایشیافته اند. زیرا مخلوط با میکروسیلیس حاوی 90% سیمان است ولی مخلوطهای با پودر شیشهحاوی 80 و 70% سیمان هستند. برای مقایسه مبتنی بر میزان سیمان مساوی ، آزمایشمقاومت ملات بر روی دو سری از نمونه ها که حاوی شیشه دانه بندی شده به جای ریزدانه (80% شیشه و 20% ماسه طبیعی) که 30% از سیمان نیز با مواد دیگر جایگزین شده بودانجام شد. در یک نمونه 30% از سیمان با پودر شیشه جایگزین شد و در دیگری با مخلوطیاز 10% میکروسیلیس و 20% سنگ بازالتی غیر پوزولانی نرم و ساییده شده. در این روشمیزان سیمان هردو نمونه مساوی است. شکل 9 نشان می دهد که نتایج مقاومت برای هردونمونه تقریبا یکسان است. باید به این نکته توجه شود که مقاومتهای نشان داده شدهدر شکلهای 7 و 9 به علت تفاوت کلی در سنگدانه های ملات اساسا قابل مقایسه نیستند. 5- اثر پودر شیشه بر انبساط ملات همانطور که در شکلهای 2 و 3 نشان داده شده دانههای در حد ماسه شیشه می توانند باعث واکنش قلیایی سنگدانه ها بصورت خطرناکی باشند ( مخصوصا در میزان بالای شیشه در آزمایش تسریع شده ملات). بنابر این 6 سری نمونه هایملات محتوی 80% دانه های شیشه فعال ساخته شد. نمونه کنترلی که حاوی سنگدانه و سیمانمعمولی بود، و در 5 نمونه دیگر سیمان با 5% و 10% میکروسیلیس و 10 و20 و 30% پودرشیشه جایگزین شده بودند.
    شکلهای 10 و 11 نشان می دهند که این ترکیبات (هردو حالت GLPو میکروسیلیس) در کاهش انبساط واکنش AAR موثر هستند به شرط اینکه به اندازهمناسب مصرف شوند (10%میکروسیلیس و <20%GLP). این نتایج نشان می دهد که نقش 20 و 30% GLP در توقف واکنش AAR بیشتر از 10% میکروسیلیس است. با وجود مقدار زیاد کربناتسدیم در شیشه (حدود13%) این نکته مهم است که خود دانه های پودر شیشه باعث انبساططولانی مدت ملات نشوند و یا باعث تحریک سنگدانه های فعال مخلوط نباشند. آزمایشطولانی مدت استوانه ملات در 38 درجه سانتیگراد و 100% اشباع با سنگدانه های فعال وغیر فعال و با میزان جایگزینی مساوی سیمان (مانند آنچه در بالا گفته شد) انجام شد. انبساط کمتر از 0.1% در یک سال نشان دهنده ترکیب بی ضرر است. شکل 12 نشان می دهد کهوقتی سنگدانه ها غیر فعالند خود GLP باعث انبساط مخلوط نمی شود. اما شکل 13 نشان میدهد که وقتی سنگدانه ها فعال هستند وجود 30%GLP باعث تحریک واکنش سنگدانه های خیلیحساسهم نمی شود. همچنین وقتی که سیمان جایگزین نشود و 30% GLP به جای سنگدانهاستفاده شود باعث انبساط خطرناک استوانه ملات نمی شود. اطلاعات نشان می دهد که GLP می تواند بدون ترس از اثرات زیانبار آن استفاده شود. 6 -پودر شیشه در بتن اثر پودرسیسه بر انبساط بتن مشخص شد.
    یکسری سنگدانه خیلی فعال در منشور بتن (بر اساس ASTM C1293) استفاده شد.انبساط خطرناک در این آزمایش 0.03% تا 0.04% در یک سال است. شکل 14 نشان می دهد که 40% GLP که پتانسیل رها سازی قلیایی بیشتری از 30%GLP دارد میتواند تا 80% از انبساط ناشی از سنگدانه های فعال جلوگیری کند. برای سنگدانه هایکمتر فعال نیز انبساط متوقف می شود. این امر نشان دهنده اثر مثبت GLP در بهبود دوامبتن است. وقتی که نسبتهای متفاوتی از GLP با سنگدانه های غیر فعال در بتن با قلیاییبالاتر (Na2O/m3 5.8) استفاده می شوند خود شیشه نیز باعث انبساط خطرناکی در مخلوطنمی شود. نتیجه آخر اینکه GLP اثر زیان آوری بر مخلوط بتن ندارد. 1-6- اثر پودرشیشه بر خزش و مقاومت بتن به تعداد نمونه های شکل 15 ولی با قلیایی کمتر برای تعیینخزش خشک شدن بتن با مقادیر مختلف GLP و میکروسیلیس استفاده شد. اطلاعات طولانی مدتنشان داده شده در شکل 16 نشان می دهد که خزش خشک شدگی مخلوطهای متفاوت زیاد نیست وبه راختی استانداردهای AS3600 را برآورده می کند.(کمتر از 0.075% در 56 روز) مقاومتنمونه های ساخته شده در شکل 17 نمایش داده شده است.
    به نظر می رسد که اگرچهمخلوطهای محتوی GLP مقاومت اولیه کمتری دارند (با توجه به سیمان کمتر) ولی به رشدمقاومت خود در محیط نمناک ادامه می دهند و به مقاومت نمونه کنترلی نزدیک می شوند. همچنین وقتی که GLP با ماسه جایگزین می شود مقاومت بصورت چشمگیری از نمونه کنترلیبیشتر است. رشد ممتد مقاومت به وضوح اثر مثبت واکنش پوزولانی GLP را در بتن نشان میدهد. 7-بافت میکروسکوپی ملات محتوی پودر شیشه نمونه های ملات محتوی GLP که 270 روزدر محیط نمناک بودند بوسیله میکروسکوپ الکترونی اسکن شدند. این نمونه های ملات نشاندهنده خصوصیات بتنهای با عمر مشابه نیز بودند. شکل 18 نشان دهنده بافت میکروسکوپیمتراکم در ملات با 30% GLP است و اثر واکنش پوزولانی شیشه را در بتن نشان می دهد. در هر دو مورد شکست سطح نمونه ملات حاکی از بافت میکروسکوپی متراکم بود. 8- نتیجهاطلاعات موجود در این مقاله نشان می دهد که پتانسیل زیادی در بازیافت شیشه و مصرفآن در حالتهای پودر ،ریزدانه و درشت دانه وجود دارد. این نتیجه نهایی می تواند حاصلشود که می توان با جایگزینی شیشه با مواد گرانقیمت تری مانند میکروسیلیس یا خاکسترهوایی و یا حتی سیمان در هزینه ها صرفه جویی کرد.
    مصرف پودر شیشه در بتن می توانداز انبساط ASR در حضور سنگدانه های فعال جلوگیری کند. همچنین بهبود مقاومت پودرشیشه در ملات و بتن چشمگیر است. آزمایشات بافت میکروسکوپی نشان دهنده این است کهپودر شیشه می تواند یک مخلوط متراکم تر تولید کند و خصوصیات دوام بتن را بهبودببخشد. این نتیجه که 30% پودر شیشه می تواند به جای سیمان یا سنگدانه در بتن (بدوننگرانی از اثرات زیانبار طولانی مدت) جایگزین شود حاصل شد. بیشتر از 50% از هر دو (پودر شیشه یا سنگدانه شیشه ای) می تواند در بتن با رده مقاومت Mpa 32 باعث بهبودقابل قبول مقاومت بتن شود.
    امید نصراللهیان

  15. کاربر مقابل از این پست Par Pari تشکر کرده است.


  16. #28
    مدیر بازنشسته

    http://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gif

    [ ]
    تاریخ عضویت
    Sep 2009
    محل سکونت
    ı̴̴̡̡̡ ̡͌l̡̡̡ ̡͌l̡ ̴̡ı̴̴̡|̲̲̲͡͡͡ ̲▫̲͡ ̲̲̲͡͡π̲̲͡͡ ̲̲͡▫
    نوشته ها
    19,922
    تشکر
    3,817
    تشکر شده 14,125 بار در 4,874 پست

    پیش فرض

    کلیاتی از روش های طراحی سازه های بتن آرمه
    سازه‌های بتنی
    سازه بتنی سازه‌ای است که در ساخت آن از بتن یا به طور معمول بتن آرمه (سیمان، شن، ماسه و فولاد به صورت میلگرد ساده یا آجدار)استفاده شده باشد.در ساختمان در صورت استفاده از بتن آرمه در قسمت ستون‌ها و شاه تیر‌ها و پی، آن ساختمان یک سازه بتنی محسوب می‌شود.
    مزایای سازه‌های بتنی
    ۱-ماده اصلی بتن که شن و ماسه می‌باشد ارزان و قابل دسترسی است.
    ۲-سازه‌های بتنی که مطابق با اصول آیین نامه‌ای طراحی و اجرا شده اند، در مقابل شرایط محیطی سخت، مقاومتر از سازه‌های ساخته شده با مصالح دیگر هستند.
    ۳-به علت قابلیت شکل پذیری بالای بتن، امکان ساخت انواع سازه‌های بتنی نظیر پل، ستون و ...به اشکال مختلف میسر است.
    ۴-سازه‌های بتنی در مقابل حرارت زیاد ناشی از آتش سوزی بسیار مقاوم اند.آزمایشات نشان داده اند که در صورت ایجاد حرارتی معادل ۱۰۰۰ درجه سانتی گراد برای یک نمونه بتن آرمه، حداقل یک ساعت طول می‌کشد تا دمای فولاد داخل بتن، که با یک لایه بتنی با ضخامت ۲٫۵ سانتی متر پوشیده شده است، به ۵۰۰ درجه سانتی گراد برسد.

    روش های طراحی سازه‌های بتن آرمه
    به طور کلی هدف از طراحی یک سازه، تامین ایمنی در مقابل فروریختگی و تضمین عملکرد مناسب در زمان بهره برداری است.چنانچه مقاومت واقعی یک سازه بطور دقیق قابل پیش بینی بود و در صورتی که بارهای وارد بر سازه و اثرات داخلی آنها نیز با همان دقت قابل تعیین بودند، تامین ایمنی تنها با ایجاد ظرفیت باربری به میزان جزئی بیش از مقدار بارهای وارده ممکن می گشت.لیکن عوامل نامشخص و خطاهای احتمالی متعددی در آنالیز، طراحی و ساخت سازه‌ها وجود دارند که یک حاشیه ایمنی را در طراحی سازه‌ها طلب می‌کنند. مهمترین ریشه‌ها و منابع این خطاها عبارتند از:
    الف:بارهایی که در عمل به سازه وارد می‌شوند و همچنین توزیع واقعی آنها ممکن است با آنچه در بارگذاری سازه فرض شده است متفاوت باشند.
    ب:رفتار واقعی سازه ممکن است با رفتار تئوریک سازه، که بر اساس آن نیروهای داخلی اعضا محاسبه می‌شوند، تفاوت داشته باشد.
    ج:مقاومت واقعی مصالح به کار رفته در ساخت سازه ممکن است متفاوت از مقادیر فرض شده در محاسبات باشد.
    د:ابعاد قطعات و محل واقعی میلگرد ها ممکن است دقیقا مطابق آنچه طراح در محاسبات خود فرض کرده نباشد.
    بنابراین، انتخاب یک حاشیه ایمنی مناسب امر بسیار دشواری است که نحوه منظور نمودن آن، به صورت یکی از مشخصه‌های اساسی روش های طراحی در آمده است. به طور کلی طراحی سازه‌های بتن آرمه به سه روش زیر صورت می‌گیرد :
    ۱: تنش مجاز
    ۲: مقاومت نهایی
    ۳: روش طراحی بر مبنای حالات حدی

    روش تنش مجاز
    این روش که قبلا روش تنش بهره برداری یا روش تنش بار سرویس نامیده می‌شد، اولین روشی است که بصورت مدون برای طراحی سازه‌های بتن آرمه بکارگرفته شد.در این روش یک عضو سازه‌ای به نحوی طراحی می‌شود که تنش های ناشی از اثر بارهای بهره برداری (یا سرویس)، که به کمک تئوری های خطی مکانیک جامدات محاسبه می‌شوند، از مقادیر مجاز تنش ها تجاوز نکنند.
    منظور از بارهای بهره برداری یا سرویس بارهایی نظیر: بار زنده، بار مرده، بار برف و بار زلزله هستند.این بارها توسط آیین نامه‌های بارگذاری، مانند آیین نامه ۵۱۹ موسسه استاندارد و تحقیقات صنعتی ایران تعیین می‌شوند.
    در این روش منظور از تنش مجاز تنشی است که از تقسیم تنش حدی ماده، نظیر مقاومت فشاری برای بتن و مقاومت تسلیم برای فولاد، بر ضریب بزرگتر از واحد، به نام ضریب اطمینان به دست می‌آید.
    تنش های مجاز مصالح توسط آیین نامه‌های محاسباتی تعیین می‌شوند.به عنوان مثال مطابق آیین نامه ACI مقدار تنش فشاری مجاز بتن f' c۰٫۴۵می باشد.
    بدین ترتیب مراحل این روش بطور خلاصه به ترتیب زیر هستند:
    ۱: تعیین بارهای وارد بر سازه

    ۲:آنالیز سازه و تعیین تنش ها در مقاطع مختلف به کمک تئوری های کلاسیک اجسام الاستیک

    ۳: تعیین تنش های مجاز با استفاده از یک آیین نامه محاسباتی

    ۴:طراحی نهایی مقطع با این محدودیت که در هیچ نقطه‌ای از سازه تنش های ایجاد شده از تنش های مجاز تجاوز نکنند.

    این روش به دلیل سادگی و سهولت کاربرد تا چندی قبل به عنوان قابل استفاده ترین روش طراحی سازه‌های بتن آرمه مطرح بود. لیکن نقاط ضعف این روش استفاده از آن را محدود کرده است. مهمترین این نقاط ضعف عبارتند از:
    الف:در این روش ایمنی به کمک تنها یک ضریب (ضریب اطمینان) و در یک مرحله منظور می‌شود، از آنجا که عواملی که لزوم تامین یک حاشیه ایمنی را ایجاب می‌کنند دارای ریشه‌ها و شدت های متفاوت هستند، در نظر گرفتن آنها تنها با کمک یک ضریب غیر منطقی است.
    ب:بتن ماده‌ای است که تنها تا تنش های معادل نصف مقاومت فشاری آن به صورت الاستیک و خطی عمل می‌کند.بنابراین با بکار بردن درصدی از مقاومت فشاری بتن در محاسبات نمی‌توان اطلاعی از ضریب اطمینان کلی سازه در مقابل فروریختگی به دست آورد.
    ج:به کار بردن این روش در طراحی بعضی مقاطع با اشکالات تئوریک مواجه است. به عنوان مثال در مقاطع خمشی تنش واقعی فولاد غالبا کمتر از مقداری است که با این روش محاسبه می‌شود.
    تا سال ۱۹۵۶ میلادی روش تنش های مجاز مبنای محاسبات در آیین نامه ACI بود.این روش از سال ۱۹۷۷ تنها در قسمت ضمائم آیین نامه و تحت عنوان روش دیگر طراحی جا داده شد.

    روش مقاومت نهایی
    روش مقاومت نهایی که در آیین نامه ACIبه نام روش طراحی بر مبنای مقاومت موسوم است،حاصل مطالعات گسترده روی رفتار غیر خطی بتن و تحلیل دقیق مسئله ایمنی در سازه‌های بتن آرمه می‌باشد.روند طراحی در این روش را می‌توان به صورت زیر خلاصه نمود:
    ۱:باربهره برداری به وسیله ضریبی موسوم به ضریب بار افزایش داده می‌شود، بار حاصله را اصطلاحا بار ضریبدار یا بار نهایی می نامند.
    ۲:بارهای ضریبدار بر سازه اعمال می‌شوند و به کمک روش های خطی آنالیز سازه ها، نیروی داخلی مقاطع محاسبه می‌شود. به این نیروی داخلی اصطلاحا مقاومت لازم گفته می‌شود.
    مقاومت لازم در یک مقطع شامل:مقاومت خمشی لازم، مقاومت برشی لازم، مقاومت پیچشی لازم و مقاومت بار محوری لازم است.
    ۳:برای هر مقطع، مقاومت طراحی آن از حاصلضرب مقاومت اسمی در ضریبی کوچکتر از واحد به نام ضریب کاهش مقاومت به دست می‌آید.
    مقاومت اسمی، حداکثر مقاومتی است که مقطع قبل از گسیختگی از خود نشان می‌دهد.مقاومت اسمی یک مقطع مشتمل است از:مقاومت خمشی اسمی، مقاومت برشی اسمی، مقاومت پیچشی اسمی و مقاومت بار محوری اسمی.
    ۴:طراحی مقطع به نحوی که در آن مقاومت لازم از مقاومت طراحی کمتر باشد.
    روش طراحی بر مبنای مقاومت، امروزه اساس کار طراحی سازه‌های بتن آرمه می‌باشد.

    روش طراحی بر مبنای حالات حدی
    به منظور تکامل روش مقاومت نهایی، به ویژه از نظر نحوه منظور نمودن ایمنی، روش طراحی بر مبتای حالات حدی ابداع گردید.این روش هم اکنون مبنای طراحی در تعدادی از آیین نامه‌های اروپایی است، با این حال این روش هنوز نتوانسته است جای روش مقاومت نهایی را در آیین نامه ACI بگیرد.این روش از نظر اصول محاسبات مربوط به مقاومت، مشابه روش طراحی بر مبنای مقاومت است و تفاوت عمده آن با روش قبل، در نحوه ارزیابی منطقی تر ظرفیت باربری و احتمال ایمنی اعضا می‌باشد.در این روش نیاز های طراحی با مشخص کردن حالات حدی تعیین می‌شوند.منظور از حالات حدی شرایطی است که در آنها سازه مورد نظر خواسته‌های طرح را تامین نمی‌کند. طراحی سازه با توجه به سه حالت حدی زیر صورت می‌گیرد:
    ۱:حالت حدی نهایی، که مربوط به ظرفیت باربری می‌شود.
    ۲:حالت حدی تغییر شکل (مانند تغییر مکان و ارتعاش اعضا)
    ۳:حالت حدی ترک خوردگی یا باز شدن ترک ها

  17. کاربر مقابل از این پست Par Pari تشکر کرده است.


  18. #29
    مدیر بازنشسته

    http://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gif

    [ ]
    تاریخ عضویت
    Sep 2009
    محل سکونت
    ı̴̴̡̡̡ ̡͌l̡̡̡ ̡͌l̡ ̴̡ı̴̴̡|̲̲̲͡͡͡ ̲▫̲͡ ̲̲̲͡͡π̲̲͡͡ ̲̲͡▫
    نوشته ها
    19,922
    تشکر
    3,817
    تشکر شده 14,125 بار در 4,874 پست

    پیش فرض

    بتن سبك و اثر ميكروسيليس ها در افزایش مقاومت آن

    يكي از معايب مهم ساختمانهاي بتني وزن بسيار زياد ساختمان مي باشد كه با ميزان تخريب ساختمان در اثر زلزله نسبت مستقيم دارد . اگر بتوانيم تيغه هاي جدا كننده و پانل ها را از بتن سبك بسازيم وزن ساختمان و در نتيجه آن تخريب ساختمان توسط زلزله مقدار زيادي كاهش مي يابد . ولي كم بودن مقاومت بتن سبك عامل مهمي در محدود نمودن دامنه كاربرد اين نوع بتن و بهره گيري از امتيازات آن بوده است . استفاده از ميكروسيليس در ساخت بتن سبك سبب شده است كه مقاومت بتن سبك بالا رود و اين محدوديت كاهش يابد . در اين تحقيق ضمن توضيحاتي در مورد بتن و تاثير آب بر روي مقاومت بتن ، بيشتر در باره بتن سبك و روشهاي افزايش مقاومت آن با استفاده از ميكروسيلس ، خواص مكانيكي و همچنين موارد كاربرد آن بحث مي شود .
    1- سيمان
    - سيمان توليد شده در كشور ما با سيمان توليد شده در كشورهاي صنعتي متفاوت است كه لازم است تفاوت آن تا حد ممكن بررسي شود .
    - طبقه بندي سيمانها شناسايي شود .
    - عدم تنوع در كيفيت سيمان نشانه ضعفهايي از سيستم ساخت و ساز مي باشد .
    - عدم استفاده از سيمان با كيفيت بالا از عوامل اوليه عمر كوتاه ساختمان در بحث مصالح مي باشد .
    2 – شن و ماسه
    - معيارها و آئين نامه هاي توليد كلان شن و ماسه بررسي شود .
    - توليد كلان شن و ماسه در كشور ما از نظر معيار و رعايت آئين نامه هاي توليد بررسي شود .
    - معايب شن و ماسه توليدي در كشور در حد كلان بدلائل زير آنرا در درجه دوم و يا سوم كيفيت قرار مي دهد .
    الف : وجود گرد و غبار
    ب : عدم شستشو
    ج : دانه بندي نا صحيح
    د : استفاده از شن و ماسه رودخانه اي بجاي شن و ماسه شكسته .
    - استفاده از شن و ماسه درجه 2 و يا 3 از عوامل ثانوي عمر كوتاه ساختمان در بحث مصالح مي باشد .
    افزايش مقاومت بتن مد نظر تمام دست اندركاران صنعت توليد بتن مي باشد .
    ساختار بتن :
    - بتن داراي چهار ركن اصلي مي باشد كه به صورت مناسبي مخلوط شده اند ، اين چهار ركن عبارتند از :
    الف : شن
    ب : ماسه
    ج : سيمان
    د : آب
    - در برخي شرايط براي رسيدن به هدفي خاص مواد مضاف به آن اضافه مي شود كه جزﺀ اركان اصلي بتن به شمار نمي آيد .
    - توده اصلي بتن مصالح سنگي درشت و ريز ( شن و ماسه ) مي باشد .
    - فعل و انفعال شيميايي بين سيمان و آب موجب مي شود شيرابه اي بوجود آيد و اطراف مصالح سنگي را بپوشاند و مصالح سنگي را بصورت يكپارچه بهم بچسباند .
    - استفاده از آب براي ايجاد واكنش شيميايي است .
    - براي ايجاد كار پذيري لازم بتن مقداري آب اضافي استفاده مي شود تا بتن با پر كردن كامل زواياي قالب بتواند دور كليه ميلگرد هاي مسلح كننده را بگيرد .
    - جايگاه استفاده آب در بتن به لحاظ انجام عمل هيدراتاسيون داراي حساسيت بسيار زيادي است .
    ويژگيهاي آب مصرفي بتن :
    - آب هاي مناسب براي ساختن بتن
    1- آب باران
    2- آب چاه
    3- آب بركه
    4- آب رودخانه در صورتي كه به پسابهاي شيميايي كارخانجات آلوده نباشد و غيره …
    بطور كلي آبي كه براي نوشيدن مناسب باشد براي بتن نيز مناسب است باستثناﺀ مواردي كه متعاقبا توضيح داده خواهد شد .
    - آبهاي نا مناسب براي ساختن بتن
    1- آبهاي داراي كلر ( موجب زنگ زدگي آرماتور مي شود )
    2- آبهايي كه بيش از حد به روغن و چربي آلوده مي باشند .
    3- وجود باقيمانده نباتات در آب .
    4- آب گل آلود ( موجب پايين آوردن مقاومت بتن مي شود )
    5- آب باتلاقها و مردابها
    6- آبهاي داراي رنگ تيره و بدبو
    7- آبهاي گازدار مانند2 co و…
    8- آبهاي داراي گچ و سولفات و يا كلريد موجب اثر گذاري نا مطلوب روي بتن مي شوند .
    نكته : 1- آبي كه مثلا شكر در آن حل شده است براي نوشيدن مناسب است ولي براي ساخت بتن مناسب نيست .
    نكته : 2- مزه بو و يا منبع تهيه آب نبايد به تنهايي دليل رد استفاده از آب باشد .
    نكته : 3- ناخالصيهاي موجود در آب چنانچه از حد معين بيشتر گردد ممكن است بشدت روي زمان گرفتن بتن ، مقاومت بتن ، پايداري حجمي آن ، اثر بگذارد و موجب زنگ زدگي فولاد شود .
    نكته : 4- استفاده از آب مغناطيسي بعنوان يكي از چهار ركن اصلي مخلوط بتن مي تواند بعنوان تاثيرگذار بر روي يارامترهاي مقاومت بتن انتخاب گردد .
    تمايز بتن از نظر چگالي :
    الف : بتن معمولي : چگالي بتن معمولي در دامنه باريك 2200 تا 2600 kg/m3 قرار دارد زيرا اكثر سنگها در وزن مخصوص تفاوت اندكي دارند ( ادامه اين مبحث از بحث ما خارج است )
    ب : بتن سنگين : از اين بتنها در ساختمان محافظهاي بيولوژيكي بيشتر استفاده مي شود مانند ساختار ، آكتورهاي هسته اي و پناهگاههاي ضد هسته اي كه مورد بحث ما نمي باشد كه چگالي آن معمولا بيشتر از 2200 تا 2600 كيلوگرم بر متر مكعب مي باشد .
    ج : بتن سبك : مصرف بتن سبك اصولا تابعي از ملاحظات اقتصادي است ضمن اينكه استفاده از اين بتن بعنوان مصالح ساختماني داراي اهميت بسيار زيادي است اين بتن داراي چگالي كمتر از 2200 تا 2600 كيلوگرم در متر مكعب مي باشد . بدليل اينكه داراي چگالي كمتر از بتن سنگين است داراي امتياز قابل توجهي از نظر ايجاد بار وارده بر سازه مي باشد چگالي بتن سبك تقريبا بين 300 و 1850 كيلوگرم بر متر مكعب مي باشد يكي از امتيازات مهم امكان استفاده از مقاطع كوچكتر و كاهش مربوطه در اندازه پي ها مي باشد ضمن اينكه قالبها فشار كمتري را از حالت بتن معمولي تحمل مي كنند و همچنين در كاهش جابجايي كل وزن مصالح بدليل افزايش توليد جايگاه ويژه اي دارد .
    روش هاي كلي توليد بتن سبك :
    - روش اول : از مصالح متخلخل سبك با وزن مخصوص ظاهري كم بجاي سنگدانه معمولي كه تقريبا داراي چگالي 6/2 مي باشد استفاده مي كنند .
    - روش دوم : بتن سبك توليد شده در اين روش بر اساس ايجاد منافذ متعدد در داخل بتن يا ملات مي باشد كه اين منافذ بايد به وضوح از منافذ بسيار ريز بتن با حباب هوا متمايز باشد كه بنام بتن اسفنجي ، بتن منفذ دار و يا بتن گازي يا بتن هوادار مي شناسند .
    - روش سوم : در اين روش توليد ، سنگدانه ها ي ريز از مخلوط بتن حذف مي شوند . بطوريكه منافذ متعددي بين ذرات بوجود مي آيد و عموما از سنگدانه هاي درشت با وزن معمولي استفاده مي شود . اين نوع بتن را بتن بدون سنگدانه ريز مي نامند .
    نكته : كاهش در وزن مخصوص در هر حالت به واسطه و جود منافذ يا در مصالح يا در ملات و يا در فضاي بين ذرات درشت موجب كاهش مقاومت بتن مي شود .
    طبقه بندي بتن هاي سبك بر حسب نوع كاربرد آنها :
    - بتن سبك بار بر ساختمان
    - بتن مصرفي در ديوارهاي غير بار بر
    - بتن عايق حرارتي
    نكته 1- طبقه بندي بتن سبك بار بر طبق حداقل مقاومت فشاري انجام مي گيرد .
    مثال : طبق استاندارد 77 – 330 ASTM C در بتن سبك ---- مقاومت فشاري بر مبناي نمونه هاي استوانه اي استاندارد از شده پس از 28 روز نبايد كمتر از Mpa 17 باشد . و وزن مخصوص آن نبايد از 1850 كيلوگرم بر متر مكعب تجاوز نمايد كه معمولا بين 1400 او 1800 كيلوگرم بر متر مكعب است .
    نكته : 2- بتن مخصوص عايق كاري معمولا داراي وزن مخصوص كمتر از 800 كيلوگرم بر متر مكعب و مقاومت بين 7/0 و Mpa 7 مي باشد .
    انواع سبك دانه هايي كه به عنوان مصالح در ساختار بتن سبك استفاده مي شود :
    الف - سبك دانه هاي طبيعي : مانند دياتومه ها ، سنگ پا ، پوكه سنگ ، خاكستر ، توف كه بجز دياتومه ها بقيه آنها منشاﺀ آتشفشاني دارند .
    نكته :1- اين نوع سبك دانه ها معمولا بدليل اينكه فقط در بعضي از جاها يافت مي شوند به ميزان زياد مصرف نمي شوند ، معمولا از ايتاليا و آلمان اينگونه مصالح صادر مي شود .
    نكته : 2- از انواعي پوكه معدني سنگي كه ساختمان داخلي آن ضعيف نباشد بتن رضايت بخشي با وزن مخصوص 700 تا 1400 كيلو گرم بر متر مكعب توليد مي شود كه خاصيت عايق بودن آن خوب مي باشد اما جذب آب و جمع شدگي آن زياد است . سنگ پا نيز داراي خاصيت مشابه است .
    ب - سبك دانه هاي مصنوعي : اين سبك دانه ها به چهار گروه تقسيم مي شوند .
    - گروه اول : كه با حرارت دادن و منبسط شدن خاك رس ، سنگ رسي ، سنگ لوح ، سنگ رسي دياتومه اي ، پرليت ، اسيدين، ورميكوليت بدست مي آيند .
    - گروه دوم : از سرد نمودن و منبسط شدن دوباره كوره آهن گدازي به طريقي مخصوص بدست مي آيد .
    - گروه سوم : جوشهاي صنعتي ( سبكدانه هاي كلينكري) مي باشند .
    - گروه چهارم : مخلوطي از خاك رس با زباله خانگي و لجن فاضلاب پردازش شده را مي توان به صورت گندوله در آورد تا با پختن در كوره تبديل به سبك دانه شود ولي اين روش هنوز به صورت توليد منظم در نيامده است .
    در جدول ( 1 ) خواص انواع بتن هاي سبك كه با اين سنگدانه ها ساخته مي شوند نشان داده شده اند :
    الزامات سبكدانه ها بتن سازه اي :
    الزامات سبكدانه ها در آيين نامه هاي ASTM C330-89 ( مشخصات سبكدانه ها براي بتن سازه اي در آمريكا ) و BS 3797:1990 ( مشخصات سبكدانه ها براي قطعات بنايي و بتن سازه اي در بريتانيا ) داده شده اند . در استاندارد بريتانيايي مشخصات واحدهاي بنايي نيز مورد بحث قرار گرفته است . اين آيين نامه ها محدوديتهايي براي افت حرارتي ( 5% درASTM و4% در BS)و همچنين در BS براي مقدار سولفات 1% 3 so (به صورت جرمي ) را مشخص نموده اند . برخي الزامات دانه بندي اين آيين نامه ها در جداول 2 ، 3 و 4 نشان داده شده اند .
    ذكر اين نكات براي فهم بهتر اين جداول مفيد است :
    1- آيين نامه BS 1047:7983 مشخصات دوباره در هواي سرد شده ، كه منبسط نشده است را در بر مي گيرد .
    2- سبكدانه هاي به كار رفته در بتن سازه اي ، صرفنظر از منشأ آنها توليداتي مصنوعي مي باشند و در نتيجه معمولا يكنواخت تر از سبكدانه طبيعي مي باشند . بنابراين سبكدانه را مي توان براي توليد بتن سازه اي با كيفيت ثابت مورد استفاده قرار داد .
    نكته : سبكدانه ها داراي خصوصيت ويژه اي هستند كه سنگدانه هاي معمولي فاقد آن مي باشند و در رابطه با انتخاب نسبتهاي مخلوط و خواص مربوط به بتن حاصل داراي اهميت ويژه اي مي باشند .اين ويژگي عبارتست از توانايي سبكدانه ها در جذب مقادير زياد آب و همچنين امكان نفوذ مقداري از خمير تازه سيمان به درون منافذ باز ( سطحي ) ذرات سبكدانه (مخصوصا ذرات درشت تر ) در نتيجه اين جذب آب توسط سبكدانه ، وزن مخصوص آنها زيادتر از وزن مخصوص ذراتي مي شود كه در گرمچال خشك شده اند .
    روشهاي افزايش مقاومت بتن سبك :
    كم بودن مقاومت بتن سبك عامل مهمي در محدود نمودن دامنه كاربرد اين نوع بتن و بهره گيري از امتيازات آن بوده است براي بدست آوردن بتن سبك با مقاومت زياد روشهاي زيادي مورد توجه قرار گرفته است .
    نكته : عامل موثر و مشترك در كليه اين پژوهشها مصرف ميكروسيليس در بتن مي باشد . در اينجا اجمالا به چند روش اشاره مي گردد :
    1- تحقيقات مشترك V.Novokshchenov و W.Whitcomb جهت افزايش مقاومت بتن سبك و بهبود ديگر خواص آن با استفاده از سبكدانه هاي سيليسي منبسط شده ، به اعتقاد آنان مقاومت بتن سبك تابعي از مقاومت سبكدانه ها و ملات است كه اين رابطه به صورت ذيل ارائه گرديد .
    fc = fm (vm)+fa (1-vm)
    fc = مقاومت بتن fa = مقاومت سبكدانه
    fm = مقاومت ملات vm = حجم نسبي ملات
    بدين ترتيب مشاهده مي شود كه مي توان با افزايش مقاومت سبكدانه و مقاومت و حجم ملات مقاومت بتن سبك را افزايش داد .

    نویسنده:امیر حسین ستوده بیدختی

  19. کاربر مقابل از این پست Par Pari تشکر کرده است.


  20. #30
    مدیر بازنشسته

    http://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gifhttp://www.iranjoman.com/images/iranjoman/neshan2.gif

    [ ]
    تاریخ عضویت
    Sep 2009
    محل سکونت
    ı̴̴̡̡̡ ̡͌l̡̡̡ ̡͌l̡ ̴̡ı̴̴̡|̲̲̲͡͡͡ ̲▫̲͡ ̲̲̲͡͡π̲̲͡͡ ̲̲͡▫
    نوشته ها
    19,922
    تشکر
    3,817
    تشکر شده 14,125 بار در 4,874 پست

    پیش فرض

    چسب بتن Concrete Adhesive CHEMEX -AD6
    يكى از مواد شيميايى كه امروزه در صنعت ساختمان كاربرد فراوانى يافته، چسب بتن است. اين چسبها عموما محلولهاى كلوئيدى از پليمرهاى مختلف در آب هستند كه مقاومت كششى، خمشى و همچنين دوام بتن را افزايش مى دهند. ولى مهمترين خاصيت آنها افزايش چسبندگى است.

    اگر چه قيمت اين مواد نسبت به قيمت بتن بالا است ولى ويژگيهائى كه استفاده از آنها در بتن ايجاد مى نمايد، كاربرد آنها را بسيار متداول ساخته است.

    بيشترين استفاده از اين مواد مربوط به كارهاى تعميراتى مى باشد، زيرا اين افزودنى با ملات، مخلوط يكنواخت و همگنى تشكيل داده و ضمن آنكه مانع تراوش آب و تفكيك دانه هاى ريز و درشت مى شود ميزان چسبندگى بتن تازه را با ملات قديمى زير آن افزايش مى دهد.



    چسب بتن CHEMEX -AD6 توليدى اين شركت برپايه رزينهاى اكريليك كه كاملا ضد آب مى باشد ساخته شده و به آسانى با آب مصرفى در بتن مخلوط مى شود. مواد بكار رفته در ساخت اين چسب با سيمان كاملا هماهنگ بوده و چسبندگى آن را به طور قابل ملاحظه اى افزايش مى دهد.



    موارد مصرف:

    چسب بتن CHEMEX -AD6 را مى توانيد براى كليه كارهاى تعميراتى و ترميم آسيب ديدگى اغلب سازه هاى بتنى مانند كانالهاى آب، كف سالنهاى صنعتى، باند فرودگاهها، سدها، پايه پلها و ستونها مصرف نمائيد.



    كاربرد مهم CHEMEX -AD6 آببند كردن منابع و استخرهاى بتنى با استفاده از ترميم كننـده MRI 77 مى باشد .



    روش و ميزا ن مصرف :

    براى ضخامتهاى كم ( تا 10 ميليمتر ) 1 پيمانه چسب بتن را با 1 پيمانه آب مخلوط كرده و ملات را با آن درست كنيد .

    بطور كلى هر چه ضخامت ملات كمتر باشد و يا نيروى بيشترى بر آن وارد آيد، براى ايجاد چسبندگى لازم چسب بيشترى مى بايست اضافه شود.

    براى ايجاد استحكام بيشتر توصيه مى شود كه محلول رقيق شده چسب به مقدار بيشترى درست شده و قبل از چسباندن ملات يك لايه از اين محلول به سطح زيرين ماليده شود.



    چسـب بتن CHEMEX -AD6 بطـور كامـل در آب حـل مى شود. حداقـل دمـاى مناسب براى كار با اين چسب 10 درجه سانتى گراد است.



    تـوجـه: در ضخامتهاى زياد چسباندن به صورت لايه به لايه مناسبتر بوده و توصيه مى شود .



    ساير مشخصات:

    حالت فيزيكى: مايع

    رنگ: شيرى

    وزن مخصوص : 1gr/cm³

    PHمحلول 1 الى 5 درصد: 7 الى 8

    يون كلر: ندارد

    زمان مصرف و نحوه نگهدارى: تا شش ماه و به دور از گرماى شديد و يخ زدگى

    بسته بندى : درگالنهاى پلاستيكى 4 و 20 ليترى

  21. کاربر مقابل از این پست Par Pari تشکر کرده است.


+ ارسال موضوع جدید
صفحه 3 از 4 نخستنخست 1 2 3 4 آخرینآخرین

اطلاعات موضوع

کاربرانی که در حال مشاهده این موضوع هستند

در حال حاضر 1 کاربر در حال مشاهده این موضوع است. (0 کاربران و 1 مهمان ها)

تعداد اعضای بازدید کننده از این تایپیک : 2

بازدید کنندگان :  (نمایش کلی)

  1. parvaneh30
  2. septic66

کلمات کلیدی این موضوع

Bookmarks

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست کنید.
  • شما نمیتوانید پست های خود را ویرایش کنید
  •